Code: 20EC4703A

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

GLOBAL POSITIONING SYSTEMS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

	1	T		<u> </u>					
			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Explain Block I, Block II, Block III in space	L2	CO1	7 M				
		segment phase development.							
	b)	Compare GPS and GALILEO system in all	L4	CO4	7 M				
		aspects.							
	OR								
2	a)	Draw the functional block diagram of the	L2	CO1	10 M				
		Master Control Station. Also explain the							
		functions of each block.							
	b)	Distinguish User Segment, Control Segment	L4	CO4	4 M				
		and Space Segment.							
UNIT-II									
3	a)	Classify GPS signal structure and also	L2	CO1	7 M				
		explain the characteristics of P-code.							

	b)	Illustrate in detail the GPS single frequency	L3	CO2	7 M			
		code receiver. List the signal processing						
		functions of the GPS receiver.						
OR								
4	a)	Explain Pseudo range measurements in GPS system.	L2	CO1	7 M			
	b)	Illustrate in detail about the GPS dual	L3	CO2	7 M			
	ŕ	frequency code receiver and its advantages						
		over single frequency code receiver.						
	l			<u> </u>				
UNIT-III								
5	a)	Discuss in detail the various errors affecting	L2	CO1	8 M			
		the GPS accuracy and methods to overcome						
		or minimize the errors.						
	b)	Compare Delta Error, Epsilon Error and	L3	CO2	6 M			
		Orbital Error.						
OR								
6	a)	Explain in detail about GPS Ephemeris	L2	CO1	8 M			
		Errors.						
	b)	Demonstrate the satellite receiver and clock	L3	CO2	6 M			
		error in detail.						
		UNIT-IV		,				
7	a)	Explain RINEX format of observation and	L2	CO1	7 M			
		navigation data files.						
	b)	Explain in detail about NMEA 0183	L2	CO3	7 M			
		standard format.						
OR								

8	a)	Explain the Header section and Data section	L2	CO1	7 M		
		in NGS-SP3 GPS standard formats.					
	b)	Illustrate in detail about RTCM SC 104	L3	CO3	7 M		
		standard format.					
	UNIT-V						
9	a)	Explain any four real time applications of	L2	CO1	7 M		
		GPS that you come across in your life.					
	b)	Distinguish Various GPS applications	L4	CO4	7 M		
		related to forestry and natural recourses.					
OR							
10	a)	List the GPS applications for the Precision	L2	CO1	7 M		
		farming and explain at least two					
		applications as examples in detail.					
	b)	Compare the GPS Applications of utility	L4	CO4	7 M		
		Industry and precision farming.					